
J .  Fluid Mech. (1990), vol. 218, p p .  163-170 

Printed in Qreat Britain 
163 

On the stability of gravity waves on deep water 
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This note presents numerical results on the stability of large-amplitude gravity 
waves on deep water. The results are then used to predict new two-dimensional 
superharmonic instabilities. They are due to collisions of eigenvalues of opposite 
signatures, confirming the recent condition for instability of MacKay & Saffman 
(1986). 

1. Introduction 
Recently, numerical computations have been used to analyse the stability of water 

waves. The main advantage is that there exists in principle no restriction concerning 
the wave steepness value. Early work was limited to two-dimensional instability 
(Longuet-Higgins 1978 a) but an extension to three-dimensional perturbations was 
made by McLean (1982) (see also McLean et d. 1981). Besides recovering many of the 
results of approximate model equations like those developed by Whitham (1974), 
Benjamin & Feir (1967), Zakharov (1968), Dysthe (1979) and Stiassnie & Shemer 
(1984), a new fundamental result was obtained: for small wave steepness, the most 
unstable disturbances are two-dimensional while, for steeper waves, the instabilities 
are predominantly three-dimensional. Even the strong two-dimensional instabilities 
found by Longuet-Higgins (1978 b)  (see also Branger, Ramamonjiarisoa & Kharif 
1986) beyond ak = 0.405 are dominated by the three-dimensional instabilities. 

Extending McLean’s work, Kharif (1987) showed that the instabilities are no 
longer predominantly three-dimensional when the wave steepness reaches a value of 
approximately 0.429. 

Very recently, the present authors (Kharif & Ramamonjiarisoa 1988) reported an 
important result concerning the relative strength of McLean’s class I and class II 
instabilities for basic wave steepness larger than 0.41. Some additional results 
concerning the latter are presented herein and then attention is focused on 
superharmonic perturbations. Generally, when unstable these perturbations do not 
possess the maximum growth rate, but we found cases where they grow a t  rates very 
close to that maximum. This may be found of some practical interest since the most 
unstable subharmonic and superharmonic instabilities are comparable a t  very high 
wave steepness. 

MacKay & Saffman (1986) gave a necessary condition for instability based on the 
Hamiltonian nature of the system (Zakharov 1968) and the notion of the signature 
of an eigenvalue. This condition is confirmed numerically for the instability 
corresponding to the collision of eigenvalues denoted (iii) by MacKay & Saffman. 
Then, a new ‘bubble ’ of two-dimensional superharmonic instability is found around 
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ak = 0.35 and another, belonging to class 11, is expected to occur at about ak = 
0.433. 

2. Mathematical formulation and numerical schemes 
The mathematical formulation of the instability of steady two-dimensional 

gravity waves on deep water to two- or three-dimensional small perturbations is now 
well known and is omitted here (for details, see e.g. McLean 1982). It suffices to recall 
that the analysis, based on Floquet theory, reduces to an eigenvalue problem for the 
complex frequency of the perturbation, v. 

Let ~‘(2, y, t )  be the vertical deflection level of the free surface and p’(x, y, z, t )  the 
velocity potential related to the perturbation. These quantities can be written as 

where p is the x-wavenumber and q the y-wavenumber. 
Then the eigenvalue problem corresponding to the linear stability problem is 

Au = iuBu (2) 

where u = (a,, b,) and the complex matrices A,  B depend on the unperturbed wave 
steepness ak and the wave vector ( p ,  q). 

By truncating the series (1) with j in the range -M < j < M the dimension of the 
matrices A, B is W + 2 .  The integer 1M is increased until the eigenvalue, v, has 
converged. The convergence of the eigenvalues is known to be sensitive to the 
accuracy of the undisturbed wave. Here, the computation was performed using the 
iterative scheme developed by Longuet-Higgins (1985) on the basis of a parametric 
representation of the free surface. In practice, the series are truncated at  a finite 
number of harmonics which is increased when the wave steepness is increased. 
Solutions are found for values of the basic wave steepness less than about 0.434. At 
this limiting value the Jacobian matrix is singular and the method fails because the 
parameter chosen to determine the basic wave is stationary. This limitation may be 
overcome by choosing a parameter which varies monotonically through the complete 
range of ak. At a wave amplitude very close to the previous value, 2300 coefficients 
were necessary to achieve an accuracy of in the parametric representation, and 
were computed on a CRAY-2 computer. The corresponding eigenvalues were 
accurate to three significant figures. The necessity of taking a very large number of 
harmonics when the wave steepness is large has been pointed out by Kharif & 
Ramamonjiarisoa (1988, table I). 

When the steepness of the undisturbed wave is zero, the eigenvalues are 

a ~ ,  = - ( (p+n)+s[ ( (p+n)2+~2~: ,  s = + I .  

The sign of s determines the direction of propagation of the disturbance relative to 
the unperturbed wave. The eigenvalues are real for zero ak and, consequently, the 
perturbations are stable. Instabilities can arise when the parameter /I = ak increases. 

Recently, taking advantage of fundamental work on Hamiltonian systems, 
MacKay & Saffman (1986) formulated a necessary condition for instability in terms 
of the collision of two eigenvalues of opposite signatures or at zero frequency. A 
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change from stability to instability can occur only if, for some ak, two modes have 
the same frequency: 

In a fixed frame of reference this relation is equivalent to the resonant conditions 

k, = k, + Nk,, 
w1 = w 2 + N o o .  

The vectors k, are the wavevectors and wt the frequencies. The subscripts 0, 1 and 
2 refer, respectively, to the undisturbed wave and to the perturbations. The integers 
N = 2,3 ,4 ,5  denote, respectively, quartet, quintet, sextet, etc., interactions. 

The analysis of two-dimensional superharmonic instabilities on the basis of 
MacKay & Saffman’s necessary condition mentioned previously was done by a 
different scheme. It consisted in resolving the eigenvalue problem first set by 
Longuet-Higgins (1978a), using the technique due to Tanaka (1983) to reduce the 
order of the matrices by a factor of two. The eigenvalue problem is 

- iuA’u’ = B’u’, 

where A’ and B’ are now real matrices depending on the coefficients in the harmonic 
representation of the basic wave and u’ is the column vector representing the 
perturbation. 

The matrix problem can be cast in the form 

Then by eliminating u;, or ui, one obtains 

( - iu)2 /ui = 
(- iu)2 /uL = (A&l B;, 

B;, A;;, BLl) ui, 
Bi2) u;, 

where is the identity matrix. 
The method of resolution briefly described here performs better than the 

collocation method. Reasons for this were given in some detail by Zhang & Melville 
(1986) and it will be shown here that reliable results on the coalescence of eigenvalues 
can be obtained even in the neighbourhood of ak = 0.426. 

3. Results and discussion 
Computations by McLean (1982) limited to wave steepness smaller than 0.41 

showed that the maximum growth rate of class I1 (m = 1) instabilities occurred for 
p = 0.5 and q + 0 while the maximum growth rates of class I (m = 2) and class I1 
(m = 2) instabilities occurred for, respectively, p = 0, q + 0 and p = 0.5, q 4 0. 
However, these most unstable perturbations are phase locked to the unperturbed 
wave. 

An extension of these computations up to a wave steepness of 0.434 was performed 
by Kharif & Ramamonjiarisoa (1988) in order to compare the relative strength of 
class I versus class I1 instabilities. The extended stability diagram is shown in figure 
1. This figure displays instability bands in the ( p ,  q)-plane for class I and class I1 
instabilities with m = 1 and m = 2 for various wave steepness. The solid lines are the 
resonance curves from the linear dispersion relation for ak = 0. The shaded regions 
correspond to values of p ,  q for which instabilities arise. For m = 2 the instability 
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FIGURE 1. Instability regions of class I and class I1 (m = 1 and m = 2) for various ak. For m = 2, 
ak = 0,0.30,0.35,0.40,0.41,0.42 and form = 1 ,  ak = 0,0.43. Solid lines show collisions for ak = 0; 
shaded regions show values of p, q for which the modes are unstable. The dots label the points of 
maximum growth rates (see Kharif & Ramamonjiarisoa 1988). Point (iii) refers to a collision of 
eigenvalues identified by MacKay & Seffman (1986). 

regions of class I and class I1 correspond successively to ak = 0,0.30,0.35,0.40,0.41, 
0.42. For m = 1, only the curve and the band of instability corresponding to, 
respectively, ak = 0 and ak = 0.43 are plotted. Superharmonic perturbations are 
associated with integer values of p ;  otherwise the perturbations are subharmonic. It 
is seen that the most unstable modes are subharmonic modes, either two-dimensional 
or three-dimensional. The theoretical and numerical results are in agreement with 
observations for small to moderate basic wave steepness (Feir 1967 ; Su 1982). 

The previous results give some insight into the phenomenon of frequency or 
wavenumber downshifting during the evolution of nonlinear wave trains : a t  small 
( 5 0.30) wave steepness, Lake et al. (1977) found that the cubic Schrodinger equation 
(Zakharov 1968) did not fully explain the frequency downshift they observed. The 
recurrent nature of the solutions of such an equation would explain this inadequacy. 
At moderate and high steepness, the most striking result of the computations is the 
existence of wavelength doubling associated with the most unstable perturbations 
( p  = 0.5). At moderate steepness the wave-field pattern is fully three-dimensional, a 
fact confirmed by experimental results (Su 1982). Two consecutive structures are 
phase-shifted in the transverse direction. When the wave steepness increases, the 
transverse wavenumber q decreases rapidly to zero so that for a basic wave 
approaching the breaking stage, our computations showed the possibilities of 
wavelength doubling in a basically two-dimensional motion. 

While the Benjamin-Feir side-band instabilities constitute free waves, the McLean 
class I and class I1 most unstable modes are bound to  the basic wave. These facts 
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have to be kept in mind when trying to utilize these fundamental results to interpret 
the experimental data. 

In the following, we shall focus on superharmonic perturbations. In particular this 
is motivated by the need to better understand the dynamics of small waves riding 
over longer waves occurring, for example, in the interaction between microwaves and 
water surface waves. 

For the two-dimensional case, the numerical calculations developed by Longuet- 
Higgins ( 1 9 7 8 ~ )  showed the perturbation to be neutrally stable up to ak = 0.42. 
Then by extrapolating the numerical results he proposed that instability would 
appear at  the steepness ak where the phase velocity is stationary. An exception was 
found by Tanaka (1983). Tanaka’s instability can now be recovered by three- 
dimensional computations. McLean (1982) found that at  ak = 0.405, the stability 
boundary of class I1 (m = 1) perturbations in the ( p ,  9)-plane touches the p-axis at  
p = 0.5. This yields to the two-dimensional subharmonic instability discovered by 
Longuet-Higgins (19786). At ak = 0.41, the range of two-dimensional instabilities has 
increased around p = 0.5. By extending the McLean computation we found the 
instability domain to increase further when ak increases and to finally reach the 
points (p, q)  = (0,O) and ( p ,  q )  = ( 1 , O )  at ak = 0.4292. This corresponds to Tanaka’s 
instability. The instability is stationary with respect to the unperturbed wave, 
implying the existence of a trivial bifurcation corresponding to a horizontal 
translation. For ak = 0.4292 there is no further extension of the boundaries of the 
unstable region along the p-axis ; this agrees with previous two-dimensional 
computations of Longuet-Higgins (1986). 

The shaded region of class I1 (m = 1) instabilities plotted in figure 1 corresponds 
to ak = 0.4303 and illustrates the above points. Thus, Tanaka’s instability belongs 
to a McLean class I1 (m = 1) perturbation. This is consistent with the conclusion of 
Longuet-Higgins (1986) and that of MacKay & Saffman (1986). By  extending the 
computations to three-dimensional cases (q + 0) we found that two-dimensional 
perturbations are the most unstable. Additional calculations have been made to 
compare the growth rates of Tanaka’s instabilities ( p  = 0, q = 0) with those of 
subharmonic instabilities ( p  = 0.5) of class I1 (m = 1). The growth rates were found 
to match each other at  about ak = 0.438. In fact within the framework of the 
MacKay & Saffman necessary condition, recalled in $2, Tanaka’s instability 
corresponds to a collision of eigenvalues at zero frequency. Also, MacKay & Saffman 
identified examples of instability due to a collision of eigenvalues of opposite 
signatures. The identification is based on the fact that a superharmonic two- 
dimensional instability will occur if the instability zones in the (p, q)-plane intersects 
the p-axis a t  integer values when the basic wave steepness varies. They presented a 
complete proof of instability for ak close to 0.24 as the instability region relative to 
class I (m = 2) crosses the p-axis at p = 4. The instability is then due to the collision 
of the modes p + m  = 4+2  and p - m  = 4-2 of opposite signatures. Then, they 
suggested without a complete proof the presence of another instability around ak = 

0.40 associated with the crossing at  p = 3 of the class I (m = 2) instability zone: the 
modes p + m = 3 + 2 and p - m = 3 - 2 of opposite signatures would collide around 
such a wave steepness. 

As an example, table 1 gives the convergence and the values of the square of the 
frequency with respect to the order of truncation N at ak = 0.42628 where an 
instability occurs. Note that very accurate values were obtained with N =  240. 
Figure 2 summarizes the result in terms of a ‘bubble of instability’ arising within a 
very narrow range of the wave amplitude. The maximum growth rate is of the order 
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Im( a2) 
N Re(a2) ( x 102) 

240 3.736004 0.121 260 
250 3.736 830 0.1 182383 
260 3.736781 0.1 159169 
270 3.736748 0.1 142247 
280 3.736726 0.113 030 1 
290 3.73671 1 0.1 12 203 5 
300 3.736702 0.1 11 6384 
310 3.736 695 0.1 1 1 2586 
320 3.736691 0.1 10 996 3 
330 3.736 688 0.1 10827 7 
340 3.736 686 0.1 107041 
350 3.736 685 0.1 106324 
360 3.736684 0.110 5742 
370 3.736683 0.1 1 0 x 4 2  
380 3.736 683 0.1 10 520 9 

TABLE 1. Convergence of the square of the frequency, oe, of the superharmonic instability due 
to  the collision of the modes (n, 8 )  = (5 , l )  and (n, 8) = (1, - 1) 

ak 

FIGURE 2. ‘Bubble’ of instability due to collision of the superharmonic modes p + m  = 5 and 
p - m  = 1 near ak = 0.426. 

of 3 x suggested by 
Zakharov (1968) for weakly resonating wave interactions. 

For class I1 (m = 2 )  with ak: close to 0.35 it appears that the instability zone crosses 
the point p = 6 on the p-axis. As shown in figure 3 this leads to a ‘bubble of 
instability ’ due to the collision of the modes p + m = 6 + 2 and p - m - 1 = 6 - 2 - 1 

and agrees quite well with the value (ak/n)* = 3 x 
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1.27 0.29 0.31 0.33 
(~k-0.3567) x 10‘ 

FIGURE 3. ‘Bubble’ of instability due to collision of the superharmonic modes p + m  = 8 and 
p-m = 3 near ak = 0.356. 

of opposite signatures. A truncation order of 70 is sufficient to obtain relevant 
eigenvalues and convergence as the wave steepness is now moderate. No appeal to 
Tanaka’s technique was necessary ; the computational procedure was similar to that 
used by Longuet-Higgins (1978a). It is seen that the maximum rate of growth is of 
the order of 0.4 x loT5. This is smaller than the expected value of ( a k / ~ c ) ~  = 2 x 
for weakly resonating interactions. No reason for this can be proposed at this time. 
An identical situation was reported by Hogan (1988) in his study of the 
superharmonic instabilities of capillary waves. From figure 1 a ‘bubble of instability ’ 
of class I1 (m = 2) would appear for ak close to 0.43 as the instability region crosses 
the p-axis a t  p = 5 ,  due to the collision of the modes p -I- m = 5 + 2 and p - m - 1 = 
5 - 2 - 1 of opposite signatures. 

As mentioned previously, superharmonic perturbations do not generally cor- 
respond to the maximum rates of growth. Nevertheless, as will be reported in a 
subsequent article, they may appear together with the most unstable (subharmonic) 
perturbations under some circumstances. 

4. Concluding remarks 
The computations on the stability of gravity waves on deep water now cover 

almost the full range of admissible steepness. They are often tedious and costly 
especially when the steepness is large. Then a stability criterion, when available, is 
of considerable importance. This article illustrates the efficiency of the condition 
stated recently by MacKay & Saffman (1986). A stability prediction appears possible 
once the dispersion relation is known (see e.g. Voronovich, Lobanov & Rybak 1980). 
Examples in the field of wave-current interactions were reported by Kharif (1990). 
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